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Introduction

The applicability of hydrocode simulations to penetration problems is an issue of ongoing
concern in the area of penetration mechanics and armor design. At present, there is a wide range
of data available on the penetration of heavy alloy rods into thick targets having planar surfaces,
and much effort has been put into modeling this case, with generally acceptable results.
Information for other types of surfaces, however, is sparse. It is also of interest to determine the
ability of currently available models to correctly track increasingly complex target configurations.
These factors prompted the performance of a comparative study at the U.S. Army Research
Laboratory's Materials Directorate, in which empirical investigation and hydrocode simulations
were made of a target/penetrator system with a non-planar impact surface. The system employed
was semi-infinite steel, with a tungsten heavy alloy long rod penetrator impacting at the bottom
of a cylindrical cavity in the target.

At impact velocity levels below the hydrodynamic limit, the stresses imposed upon both
penetrator and target materials are significantly greater than their yield strengths, but material
strength still has a role in determining penetration behavior. The penetration of long rods under
such conditions is a quasi-hydrodynamic process. Yielded penetrator material is basically
ejected from the penetrator/target interface, in conjunction with failed target material. Many
papers discussing this system are available; Tate [1] first performed an analysis of this system
for a 1-dimensional case, while a thorough review and discussion of the models commonly
employed for this type of penetration was made by Anderson et al [2]. A comprehensive
collection of penetration data is available in the Penetration Mechanics Database report compiled
by Anderson, Morris, and Littlefield [3].

The main objective of this report is twofold: first, to experimentally evaluate the effects of
surface constraint on the penetration process of a tungsten heavy alloy (WHA) long rod into a
thick RHA target, and second, to computationally predict the depth of penetration. For this
purpose, two target configurations were considered. The first configuration is a flat 127 mm thick
RHA plate, having a sufficiently large width to exclude the lateral boundary from affecting the
penetration process. The second configuration is a 152 mm thick RHA plate with a 25.4 mm
deep and 19 mm diameter shallow cavity. The projectile impacts at the bottom of this cavity,
which is 25.4 mm from the free surface. The difference between the two configurations with
respect to projectile penetration, is the presence of the cavity wall surrounding the impact plane
close to the projectile in one case, against the absence of the cavity wall in the other case.

Prior to conducting the experiments, we performed a detailed numerical study to
understand and predict the effect of penetration into a shallow cavity of a thick flat target. In the
simulations, we employed the EPIC-2 Lagrangian finite element code [4]. The EPIC-2 (1986
version) code has been successfully installed on the Apollo series 400 and 700 workstations at
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the Materials Directorate. For the present study, we found the workstation environment to be

extremely useful and efficient. The results were analyzed using in-house post-processors [5].

In the "Ballistic Testing Procedures" section, the experiments on the two different targets

are reported in detail, and the depth of penetration (DOP) values are tabulated. The "Numerical

Simulation" section compares the hydrocode-predicted DOP with experimental measurements.
In this section, the effects of target strength and mesh size on the penetration are also
investigated.

Ballistic Testing Procedures

The target employed was a monolithic plate of RHA (rolled homogeneous armor) steel

(MIL-A- 12560, Class 3), with a total thickness of 152 mm (nominal 6 in.). A series of cylindrical

holes with 19 mm (0.750 inch) diameter and 25.4 mm (1 inch) depth were cut into the plate with

an end mill. These holes were spaced apart at a distance of 63.5 mm (2.5 inch) from center to

center. The hole dimensions employed were chosen so as to minimize the cavity diameter while

precluding the rod from contacting the cavity side wall during penetration, given a shot less than

30 total yaw. A schematic is shown in Figure 1 detailing the target geometry. The plate was held

at 0' obliquity (i.e., normal to the line of flight). The average hardness of the plate was HRC 27.

This corresponds to a quasi-static yield strength of approximately 0.9 GPa (125 ksi).

0.081

0.04

0.00-

-0.04-

-0.08

-0.12

-0.16 -

-0.12 -0.08 -0.04 0.00 0.04 0.08 0.12

Figure 1. Schematic of a shallow cavity target and a long rod penetrator.
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The penetrators were cylindrical rods with hemispherical noses, having aspect ratios (L/D)
of 10:1, and average masses of 65.4 g. Dimensions are given in Table 1 below. The penetrator
material is a 91 % tungsten heavy alloy (WHA) material, designated X-27C.

Table 1. Penetrator dimensions, mass, and material

Length (mm) Diameter (mm) Mass (g) Density (g/cm 3) Material

78.74 7.87 65.4 17.35' WHA (X-27C)

Ballistic tests were conducted with a 20 mm smoothbore powder gun. The projectiles
were launched in base-push sabot packages which employed a steel pusher disc. Projectile
velocity and yaw were measured by means of an orthogonal flash X-ray system. A nominal

striking velocity of 1500 m/s (4900 ft/s) was chosen to match that used in standard materials
evaluation tests. The criterion for acceptance and inclusion of a test point was a total projectile
yaw of less than 30. However, the yaw was close to 3.4a in test #T61-92-3 as shown in Table 2.

Table 2. Test results

Test Number Impact Velocity Total Yaw DOP

m/s ft/s (degrees) (mm) (inch)

T61-92-1 1508 4948 0.78 73.7 2.90

T61-92-2 1501 4925 0.33 68.1 2.68

T61-92-3 1499 4919 3.40 67.0 2.64

The final depths of penetration into the RHA plate were obtained by direct measurement from
cross sections, which were prepared by bandsaw cutting through the center of the penetration
cavity. The reference penetration of the projectile into RHA steel of an equivalent hardness level
had been previously determined [3]. At the nominal velocity, the reference penetration is 68.6

mm (2.70 inch) with a scatter of - 3.8 % (within two standard deviations). Penetration for the
reference case (planar surface) is plotted as a function of velocity in Figure 2, together with the
above results from the cylindrical cavity tests. The experimental results indicated that the effect
of a shallow cavity at the front surface of the target did not influence the penetration mechanism.
Within the limits of experimental error, the average values of DOP from the three shallow-cavity
tests agreed with the DOP data from the flat plate targets.
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Target Geometry Effect on Penetration

100.0- e Flat Surface (RHA Steel)
• Cavity - 19ram diameter (RHA Steel)

8 0.0--

0oM 40.0--,
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Figure 2. Penetration depth as a function of impact velocity for flat and
shallow-cavity targets.

Numerical Simulations

The main objective of the numerical simulations was to predict the depth of penetration
(DOP) of the WHA long rod projectile into the RHA steel target and to compare these predictions
with the measured DOP values. The 1986 version of the EPIC-2 finite element code [4] was
employed in the numerical simulations. We employed the crossed-triangles option to discretize
the target and penetrator. The material behavior was described using a strain rate, temperature,
and pressure dependent strength model.

Three target configurations were considered: 1) a flat plate (target) of 127 mm thickness
and 100 mm diameter, 2) a 152 mm thick plate with a shallow cavity of 19 mm diameter and 25.4
mm depth, and 3) a 152 mm thick plate with a shallow cavity of 11.54 mm diameter and 25.4 mm
depth.

For convenience, we address the first configuration as "flat target", the second as "big
cavity", and the third as "small cavity". The schematic plot of the big cavity target was shown
earlier in Figure 1. The flat and small cavity target configurations are shown in Figures 3 and 4.
The small cavity target was selected to provide a limiting case for confinement, which would be
difficult to perform experimentally.
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Figure 3. A fine mesh, flat target configuration.

Figure 4. Schematic of the small shallow cavity target configuration.
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In the initial simulations, a relatively coarse mesh was considered, but in later runs, finer
meshes were used for the target. The projectile was described through elements of four columns

and twenty rows. The aspect ratio of the elements near the impact regions was about one. In
all meshes used, the aspect ratio of the elements was uniformly increased when moving towards
the projectile tail. The cross triaagle option in the EPIC code was used.

To study the effects of finite element mesh sizing on the calculated penetration depths,

a fine mesh for the target was also employed. However, the projectile mesh was the same for
both fine and coarse mesh target cases. For the flat target and big cavity cases, two different
meshe., were considered. For all cases, the finer mesh contained more than double the elements

of the coarse mesh. Figure 5 shows an overall view as well as the close-up views at the impact

region. The aspect ratio of the crossed triangle cells was again close to one.

The EPIC-2 simulations runs were performed on the 700 series of Apollo workstations.
The mesh details and computing times are both reported in Table 3. The finer meshes required

about three to four times as long to solve as the coarser meshes.

Table 3. Mesh details and computing time

Coarse Mesh Fine Mesh

Number Flat Big Cavity Small Cavity Flat Big Cavity
Of

# Proj. Target Proj. Target Proj. Target Proj. Target

Node 401 1661 401 1871 401 1951 401 4121 401 4331

Element 704 3200 704 3600 704 3760 704 8000 704 8400

Time 1.03 1.14 1.40 2.98 4.05
(hrs)

Material Strength

The Johnson-Cook (J-C) strength model 161 was used to describe the high strain rate
behavior of the WHA penetrator, and the RHA steel target. The J-C model constants for WHA
were used from the EPIC material library. However, the RHA constants were based on the recent

report of Gray Ill, et al [7]. In their model constants determination scheme, the compressive
Hopkinson bar data at strain rates of 3000/sec to 7000/sec were employed. The J-C model is
described by the following equation:
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Figure 5. (a) Fine mesh for big cavity case and (b) cloz.,-up mesh near the impact area
at t > 0. Dimensions are shown in meters.
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Y=(A+Be')(1 +CIn V)(1 - T °m ) (1)

where, A, B, C, n, and m are model constants, and T' is given by,

WHA: T=_ T ) (2)

Steel: T*= T (3)

with T is in degrees Kelvin. The subscript 'melt' and 'room' represent melting and room
temperatures respectively. The WHA density was 17.35 g/crn3 and RHA was 7.8 g/cm3. The bulk
and shear moduli for the steel were 164 Gpa and 77.5 GPa, respectively, and for WHA, 302 GPa
and 124 GPa, respectively.

Table 4. Johnson-Cook model constants

Material A (GPa) B (GPa) C n m

WHA 1.5 0.18 .016 .12 1.0

RHA steel 1.4 1.8 .005 .768 1.17

In the simulation, material failure is assumed to be due to erosion only. When the effective plastic

strain in an element reached a value of 1.5, the material is eroded away in the calculation. The
Mie-Gruneisen model, which describes the equation-of-state (EOS) of the material, was used to
model WHA and RHA steel. The EOS parameters are available in the EPIC-2 library.

Mesh Effect on the DOP

Two calculations were performed using a coarse mesh and a fine mesh for the target to
examine the effect of mesh on the computational results. The fine mesh had more than twice the
number of nodes and elements compared to the coorse mesh. The target elements inside a
radius of 9.5 mm were uniformly small with an aspect ratio of about 1. This radius of 9.5 mm was
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divided with an uniform spacing of 0.95 mm. The element size was geometrically increased along
the radius direction beyond the radius of 9.5 mm, while the size of the element along the
penetration direction (z-direction) remained at 0.95 mm. The main difference between the two
meshes was in the coarseness of the elements along the z-direction. In the fine mesh, this size
was kept constant in the entire target thickness; however, in the coarse mesh, the element size
along z was geometrically increased. The DOP results for the fine mesh and the coarse mesh
am shown in Figure 6. The DOP values compared very well for about 100 microseconds, while
later the values started slightly differing. The calculated DOP between the two meshes differed
by about 5 mm. This difference amounts to a scatter of 5.5 percent in the DOP values. In
general, both meshes used would be expected to give dependable results due to the relatively
small element sizes employed. However, increasing the number of elements in the finer mesh

did improve the predicted value of DOP as compared to the coarser mesh. In Figure 6, the DOP

drops slightly beyond 150 gs due to rebounding of the residual penetrator.

MESH EFFECTS ON PENETRATION DEPTH

, 60.0

060.0

bLJ

020.

t: ---- FINE MESH

H eeeee COARSE MESH

LUJ0 0 .0 ........ ......... lol ........ . . . .

0 50 100 150 2W0

TIME (MICROSECONDS)

Figure 6. Comparison of DOP versus time between fine and

coarse mesh for big cavity case.
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Target Strength Effect on DOP

The effect of target material strength on the DOP was examined through two simulations,
both using the fine mesh configuration. In the first simulation, the material is realistically
described using the high strain rate dynamic compressive data obtained from RHA steel. In the
second simulation, the stress-strain curves generated by the EPIC-2 library for a relatively soft
4340 steel were employed.

The stress-strain curves generated using the J-C model for RHA and 4340 steels at quasi-
static and dynamic strain rates are shown in Figure 7. The DOP in low strength 4340 steel was
about 20% higher than the DOP in high strength RHA. It is fairly well known that the penetration
in thick targets, where the failure process is mainly due to erosion, is sensitive to the stress-strain
response (strength) of the target material. The present numerical modeling demonstrated the
expected effects of strength on DOP. In Figure 8, the DOP values obtained using the two
different strengths are compared. These results were obtained for the big cavity target. Similar
results were obtained for the flat targets.

R-A VS. 4340 STEEL STRENGTH EFFECTS ON PENETRATION DEPTH

Z~.mI-I - ---

4340 sLOel 'TRE•TI434

w18-- -~i~ W /00

IL.
W0/

TI- - --HIGfRSTRENGTH HA
I- LOW.ER STRENGTH 4340

9 .............. .......... ....... ................................
0.0 8.1 9.2 0.3 0.4 8 so 18e 19 2W8

STRAIN TIME (MICROSECONDS)

Figure 7. Comparison of the stress-strain curves Figure 8. Comparison of DOP versus time
between RHA and 4340 steel at strain rates of between the simulations using the RHA and 4340
0.001/s and 5000/s. steels.
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Analysis of the Simulations

In this section, the computational results from the three simulations of the fiat plate, the

big shallow cavity, and the small shallow cavity configurations, are analyzed in details. For this
purpose, we considered the effective plastic strain histories of four elements at various locations
of the target (see Figure 5). For simplicity, these elements will be referred to as element #1,
element #2, element #3, and element #4. The actual element numbers in the simulations are
different. The first element is located at a radial distance which corresponds to the edge of the
large shallow cavity at the top face of the target. The other three elements are located at depths

of 30, 60, and 90 mm below the impact plane along the axis of symmetry. The effecti, e plastic

strain 4 of element #1 as a function of time is compared for the three cases in Figure 9. Rapid

plastic strain accumulation occurs in all cases; however, accumulation to the erosion strain level
(1.5) occurs sooner in the big cavity, followed by the small cavity, and flat target. The plastic flow
occurs rapidly due to stress concentration at the cavity edge. This is also true in the case of the
small cavity; however, the effect of cavity edge is less pronounced due to the presence of large
plastic flow generated by the projectile near the impact region. This region is closer to the cavity
edge in the small cavity case.

ELEMENT *1 EFFECTIVE STRAIN

Z2.0-

0•

U

0)

-J
0-

W

0.5 - -SMALL CAVITY
F- LARGE CAVITY

U -FLAT

LI .0. .. ...

0 1 2... 3. 4 5

TIME (MICROSECONDS)

Figure 9. Effective plastic strain histories at the cavity edge location
for the three target configurations.
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In the big cavity case, the cavity edge is sufficiently far away from the projectile generated
plastic flow regions that the plastic zone near the edge initially does not interfere with the plastic

flow region at the impact area. In fact, the present study was initiated to find whether the plastic
flow near the side wall of the shallow cavity would eventually influence and change the depth of

penetration. At the impact velocity selected, this effect is short lived only lasting for about one
microsecond. The effective plastic strain values reach the erosion strain level of 1.5 and the code

erodes the element away. Similar results were observed for the other elements along the axis

of symmetry. Though the cavity edge was not anywhere near these elements, the plastic strain
in elements of the big cavity configuration accumulated faster than the plastic strain in the small

and flat cases.

To compare the elastic-plastic regions of the big cavity (solid line) and flat (dashed line)

targets, the 4 contours for a value of 0.01 are plotted in Figure 10. The elastic-plastic zones

are very similar, except around the cavity edge. In the big cavity case, the plastic zone is slightly
larger than it is in the flat target case. However, this slight difference did not influence the DOP.

The plastic strain contour in the big cavity case is tied around the cavity, whereas in the flat target

case it spreads away from the impact plane.

0. 0075 -

filat I

0.0000-

-. 0075-cavity
-. 0075

//
- .0150-

-. 0225

-. 0300-

-. 0375-, ,,

-. 02 -. 01 0.00 0.01 o. 0Z

Figure 10. Comparison plot of elastic-plastic zone sizes between big cavity and flat target

configurations.
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To further validate the analysis, the penetration depth was estimated from the EPIC-2
results, using a calculation based on the position of the leading face of the projectile, as shown
in Figure 11. The EPIC-2 results obtained for erosion strains values of 1.5 and above were
almost identical. The effective plastic strain based failure model was not used in the calculations.
The failure of the material elements were entirely due to erosion. In the simulation, the leading
face of the deformed projectile was not planar due to erosion. Therefore, the leading node at the
axis-of-symmetry was used in the DOP estimation from the deformed mesh of the projectile-target
configuration.

The secondary penetration directly beneath the projectile was not considered as part of
the penetration depth in the analysis. This secondary penetration could be due to numerical
artifacts. The experimental measurements did not exhibit any such secondary penetration. The
measured DOP is also based on the distance between the impact plane and the leading edge
of the residual penetrator. Therefore, the definition of the depth of penetration is consistent with
the experimental measurements.

A special purpose post-processor [5] was used to obtain the location (Z-coordinate) of the
uneroded leading point on the projectile from the EPIC-2 output file which stored the deformed
projectile-target configurations at various time intervals.

0

Figure 11. The definition of depth of penetration from the simulation results.
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In Figure 12, the penetration depths as function of time are plotted for the three cases.
It must be noted that while a fine mesh was used for the flat target and big cavity, only a coarse
mesh was used for the small cavity. The slight difference observed between the small cavity and
the other two cases is therefore assumed to result from the mesh effect. It was shown earlier
(see Figure 6) that the coarse mesh under-predicted the DOP, in general. Therefore, according
to these simulations and ignoring the mesh effects, the DOP of a WHA long rod projectile into a
thick RHA target is not influenced by the constraint conditions imposed by the shallow cavity.
Computed DOP values from the EPIC simulations for the 1500 m/s (4900 ft/s) impact condition
are tabulated in Table 5.

PENETRATION DEPTH

37

LJ 40. 0

• .. a -.I-

z

I-

LI•

-- -/AGECVT

IL

TIME---LARGSECAVITY

Figure 12. Comparison plot of DOP for the three target configurations.
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Table 5. Computed depth of penetrations

Case DOP
(mm)

Flat Fine Mesh 72.7

Flat Coarse Mesh 71.7

Big Cavity Fine Mesh 73.3

Big Cavity Coarse Mesh 69.8

Small Cavity Coarse Mesh 67.6

Comparison with Data

In comparing the measured data from the penetration experiments with the simulations,
results from both thp fine mesh and the coarse mesh simulations were considered. In Figure
13, the computed vaues are compared with the data. The predicted values matched extremely
well with the experimental measurements, all falling within the limits of the variability in the
empirical results.

100.0- E) Flat Target Data07 Big Cavity Data '
A EPIC-86 Simulations (All cases)

90.0 -

80.0-

E
" " 70.0-

0.
0

60.0-

50.0

40.0
1200 1300 1400 1500 1600 1700 1800

V8 (m/0)

Figure 13. Comparison of DOP between experimental data and EPIC simulation.
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Summary and Conclusions

During the past decade, the hydrocode simulation capabilities have been steadily
improving and hydrocodes have seen significant use as design tools in warhead and target

analyses. Due to lack of documentation, many computational studies remain unnoticed or stay
as unpublished works. This leads to a continual need to 'reinvent the wheel' when undertaking
such studies. Therefore, we felt it necessary to document the outcome of our recently conducted
combined experimental/computational study of WHA penetration into thick RHA steel through this
report.

The main objective of the study was to investigate the effects of a shallow cavity at the
front surface of a thick target on the depth of penetration of a long rod projectile. Prior to

conducting the experiments, computational studies were performed using the EPIC-2 Lagrangian
finite element code. The secondary objective was to demonstrate the applicability of code

calculation in predicting the penetration of a metal long rod into a metal target. In the simulation,
three target configurations were considered: 1) a 127 mm thick flat target, 2) a 152 mm thick flat
target with a 9.5 mm radius and 25.4 mm deep shallow cavity at the front face, and 3) a 152 mm
thick flat target with a 5.7 mm radius and 25.4 mm deep shallow cavity at the front.

The effects of mesh size and material strength on the computed DOP were initially
examine, A relatively coarser mesh yielded results that were comparable to the results from a
very fine mesh. In general, if the mesh is designed properly, we can successfully eliminate the
need for excessive refinement of the mesh. It was possible to employ a fine mesh near the
penetration region and a coarse mesh further away from this region. The aspect ratio of cells or
elements near the penetration event should be close to one to ensure realistic results.

The accurate description of dynamic material behavior is also very important in the
hydrocode simulation. The effect of target strength on the depth of penetration was demonstrated
in this study. The calculated DOP using a softer material with an initial yield strength of 0.7 GPa

at a strain rate of 5000/sec, was significantly higher than the calculated value for a stronger
material (1.4 GPa). In the simulations, we accurately modeled the high strain rate behavior of
RHA steel using the data from dynamic stress-strain curves. The Johnson-Cook strength model

constants for RHA are available in the open literature.

The comparisons of time and contour plots of effective plastic strain between the three
cases revealed that the effect of the cavity wall on the penetration process was negligible. Since

the plastic flow regions at the penetration sites rapidly merged with the plastic strain region
around the cavity edge, the penetration process proceeded as if there was no cavity. The cavity
wall did not modify the surface boundary conditions so as to provide any additional resistance to
the penetrator, a result which was counter to our initial expectation. The computed depth of
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penetration values for the three cases were very similar. The computed values compared
extremely well with the measured data. In summary, the computational results did provide an
improved understanding of the penetration process in targets of this sort. The code also provided
an accurate quantitative measure of penetration in the target.
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